

FAST+MORE

Derived Results & License Types

1. Which Derived Result Value is available in with FAST+MORE License

Unique Name	Unit example	Caption	Equation	Explanation	available with Starter License	available with Profess. License	available with Enterpr. License
i_Max_DoU		Maximum DoU of all DoU's	<u>for Screws:</u> $\max(i_DoU_StickFric_min, f_DoU_AxialCombStress_Thread_max, i_DoU_ShearStress_Thread),$ <u>for Rivets:</u> $\max(f_DoU_AxialStress_Shaft, i_DoU_ShearStress_Shaft, i_DoU_CombStress_Rivet)$	Maximum Degree of Utilization (DoU) of all available DoU's.	✓	✓	✓
i_DoU_StickFric		Utilization of Friction at Body Interface	$(i_F_shear * f_Input-SF_StickFric * f_Input-SF_ModelClass) / i_F_StickFric$	Degree of Utilization (DoU) of the action Shear Force in relation to Stick Friction at an Intersection, including user defined SaftyFactor f_Input-SF_StickFric and f_Input-SF_ModelClass	✓	✓	✓
i_DoU_StickFric_max		Utilization of Friction at Body Interface with max. Bolt Pretension	$(i_F_shear * f_Input-SF_StickFric * f_Input-SF_ModelClass) / i_F_StickFric_max$	Degree of Utilization (DoU) of the action Shear Force in relation to Stick Friction at an Intersection with max. Bolt Pretension, including user defined SaftyFactor f_Input-SF_StickFric and f_Input-SF_ModelClass	🚫	✓	✓
i_DoU_StickFric_min		Utilization of Friction at Body Interface with min. Bolt Pretension	$(i_F_shear * f_Input-SF_StickFric * f_Input-SF_ModelClass) / i_F_StickFric_min$	Degree of Utilization (DoU) of the action Shear Force in relation to Stick Friction at an Intersection with min. Bolt Pretension, including user defined SaftyFactor f_Input-SF_StickFric and f_Input-SF_ModelClass	🚫	✓	✓

i_DoU_ShearStress_Shaft		Utilization of the Fastener Shear-Strength at the Shaft	$\frac{(i_{\text{ShearStress_Shaft}} * f_{\text{Input-SF_ShearStrength}} * f_{\text{Input-SF_ModelClass}}) / (\text{Factor}'\tau_a/R_m' * \text{UltimateStrength}_Rm)}$	Degree of Utilization (DoU) of the Fastener Shear Strength at the Shaft-Crosssection, already including user defined SaftyFactor f_Input-SF_ShearStrength and f_Input-SF_ModelClass	✓	✓	✓
i_DoU_ShearStress_Thread		Utilization of the Fastener Shear-Strength at the Thread	$\frac{(i_{\text{ShearStress_Thread}} * f_{\text{Input-SF_ShearStrength}} * f_{\text{Input-SF_ModelClass}}) / (\text{Factor}'\tau_a/R_m' * \text{UltimateStrength}_Rm)}$	Degree of Utilization (DoU) of the Fastener Shear Strength at the Thread-Crosssection, already including user defined SaftyFactor f_Input-SF_ShearStrength and f_Input-SF_ModelClass	✓	✓	✓
f_DoU_AxialCombStress_Thread		Utilization of the Bolt Yield Strength at the Thread	$\frac{(f_{\text{CombStress_Thread}} * f_{\text{Input-SF_AxialYieldStrength}} * f_{\text{Input-SF_ModelClass}}) / \text{BoltYieldStrength}_Re}$	Degree of Utilization (DoU) of the Bolt/Screw Strength at the Thread for static loads, already including user defined SaftyFactor f_Input-SF_AxialYieldStrength and f_Input-SF_ModelClass	✓	✓	✓
f_DoU_AxialCombStress_Thread_max		Utilization of the Bolt Yield Strength at the Thread with max. Bolt Pretension	$\frac{(f_{\text{CombStress_Thread_max}} * f_{\text{Input-SF_AxialYieldStrength}} * f_{\text{Input-SF_ModelClass}}) / \text{BoltYieldStrength}_Re}$	Degree of Utilization (DoU) of the Bolt/Screw Strength at the Thread for static loads with max. Bolt Pretension, already including user defined SaftyFactor f_Input-SF_AxialYieldStrength and f_Input-SF_ModelClass	🚫	✓	✓
f_DoU_AxialCombStress_Thread_min		Utilization of the Bolt Yield Strength at the Thread with min. Bolt Pretension	$\frac{(f_{\text{CombStress_Thread_min}} * f_{\text{Input-SF_AxialYieldStrength}} * f_{\text{Input-SF_ModelClass}}) / \text{BoltYieldStrength}_Re}$	Degree of Utilization (DoU) of the Bolt/Screw Strength at the Thread for static loads with min. Bolt Pretension, already including user defined SaftyFactor f_Input-SF_AxialYieldStrength and f_Input-SF_ModelClass	🚫	✓	✓

f_DoU_AxialStress_Shaft		Utilization of the Rivet Axial Yield Strength	$\frac{(f_{\text{AxialStress_Shaft}} * f_{\text{Input-SF_AxialYieldStrength}} * f_{\text{Input-SF_ModelClass}}) / \text{BoltYieldStrength_Re}}{}$	Degree of Utilization (DoU) of the Rivet Strength in the Shaft for static loads, already including user defined SaftyFactor $f_{\text{Input-SF_AxialYieldStrength}}$ and $f_{\text{Input-SF_ModelClass}}$	✓	✓	✓
i_DoU_CombStress_Rivet		Utilization of the Combined Strength of a Rivet	$\text{DoU_ShearStress_Shaft} + \text{DoU_AxialStress_Shaft} * \text{Rivet_Comb_Axial_Factor}$	Degree of Utilization (DoU) of the Combined Axial and Lageral Rivet Strength: $F_{\text{lateral}} / F_{\text{lateral_allowed}} + F_{\text{axial}} / (F_{\text{axial_allowed}} * \text{Rivet_Comb_Axial_Factor}) \leq 1$	✓	✓	✓
f_DoU_Fatigue	1	Utilization of the Fastener Fatigue	for Screws: see detailed calculation steps at the end of 'Fastener Details'-Report, for Rivets: not available)	Degree of Utilization (DoU) of Screw Fatigue (not available for Rivets). Is calculated separately for each Interface of a Fastener and the worst Interface-DoU is applied for the entire Fastener. The SAME DoU is assigned to each LoadSet, as it depends on the max. Amplitude between two LoadSets.	🚫	🚫	✓
f_Nb_Cycles	1	Fatigue Limit Number of Cycles	for Screws: see detailed calculation steps at the end of 'Fastener Details'-Report, for Rivets: not available)	Number of alternating cycles for finite life fatigue strength. 2 000 000 cycles is assumend as fatigue life. Smallest permissible value is 10 000, smaller life is marked with -1. The SAME value is assigned to each LoadSet, as it depends on the max. Amplitude between two LoadSets.	🚫	🚫	✓
f_LS-A_fromFatigueAmplitude	1	First LoadSet of max. Stress Amplitude for Fatigue-Assessm.	see calculation at the end of 'Fastener Details'-Report	FIRST of two LoadSet Numbers, between which the maximum Amplitude of the Nominal Stress (Axial+Bending) occurs for Fatigue assessment in 'f_DoU_Fatigue' and 'f_SF_Fatigue'.	🚫	🚫	✓

f_LS-B_fromFatigueAmplitude	1	Second LoadSet of max. Stress Amplitude for Fatigue-Assessm.	see calculation at the end of 'Fastener Details'-Report	SECOND of two LoadSet Numbers, between which the maximum Amplitude of the Nominal Stress (Axial+Bending) occurs for Fatigue assessment in 'f_DoU_Fatigue' and 'f_SF_Fatigue'.	🚫	🚫	✓
i_Min_SF		Minimum SF of all SF's	$1 / i_{Max_DoU}$	Minimum Safety Factor (SF) of all relevant SF's	✓	✓	✓
i_SF_StickFric		Safety Factor (SF) for Friction at Body Interface	$1 / i_{DoU_StickFric}$	Safety Factor (SF) for the action Shear Force in relation to Stick Friction at an Intersection, already including user defined SaftyFactor SF_StickFriction and SF_ModelClass	✓	✓	✓
i_SF_StickFric_max		Safety Factor (SF) for Friction at Body Interface with max. Bolt Pretension	$1 / i_{DoU_StickFric_max}$	Safety Factor (SF) for the action Shear Force in relation to Stick Friction at an Intersection with max. Bolt Pretension, already including user defined SaftyFactor SF_StickFriction and SF_ModelClass	🚫	✓	✓
i_SF_StickFric_min		Safety Factor (SF) for Friction at Body Interface with min. Bolt Pretension	$1 / i_{DoU_StickFric_min}$	Safety Factor (SF) for the action Shear Force in relation to Stick Friction at an Intersection with min. Bolt Pretension, already including user defined SaftyFactor SF_StickFriction and SF_ModelClass	🚫	✓	✓
i_SF_ShearStress_Shaft		Safety Factor (SF) for the Fastener Shear-Strength at the Shaft	$1 / i_{DoU_ShearStress_Shaft}$	Safety Factor (SF) for the Fastener Shear Strength at the Shaft-Crosssection, already including user defined SaftyFactor SF_FastnerShearStrength and SF_ModelClass	✓	✓	✓

i_SF_ShearStress_Thread		Safety Factor (SF) for the Fastener Shear-Strength at the Thread	1 / i_DoU_ShearStress_Thread	Safety Factor (SF) for the Fastener Shear Strength at the Thread-Crosssection, already including user defined SaftyFactor SF_FastnerShearStrength and SF_ModelClass	✓	✓	✓
f_SF_AxialCombStress_Thread		Safety Factor (SF) for the Bolt Yield Strength at the Thread	1 / f_DoU_AxialCombStress_Thread	Safety Factor (SF) for the Bolt/Screw Strength at the Thread for static loads, already including user defined SaftyFactor SF_FastnerAxialYieldStrength and SF_ModelClass	✓	✓	✓
f_SF_AxialCombStress_Thread_max		Safety Factor (SF) for the Bolt Yield Strength at the Thread with max. Bolt Pretension	1 / f_DoU_AxialCombStress_Thread_max	Safety Factor (SF) for the Bolt/Screw Strength at the Thread for static loads with max. Bolt Pretension, already including user defined SaftyFactor SF_FastnerAxialYieldStrength and SF_ModelClass	🚫	✓	✓
f_SF_AxialCombStress_Thread_min		Safety Factor (SF) for the Bolt Yield Strength at the Thread with min. Bolt Pretension	1 / f_DoU_AxialCombStress_Thread_min	Safety Factor (SF) for the Bolt/Screw Strength at the Thread for static loads with min. Bolt Pretension, already including user defined SaftyFactor SF_FastnerAxialYieldStrength and SF_ModelClass	🚫	✓	✓
f_SF_AxialStress_Shaft		Safety Factor (SF) for the Rivet Axial Yield Strength	1 / f_DoU_AxialStress_Shaft	Safety Factor (SF) for the Rivet Strength in the Shaft for static loads, already including user defined SaftyFactor SF_FastnerAxialYieldStrength and SF_ModelClass	✓	✓	✓
i_SF_CombStress_Rivet		Safety Factor (SF) for the Combined Strength of a Rivet	1 / i_DoU_CombStress_Rivet	Safety Factor (SF) for the Combined Axial and Lageral Rivet Strength: F_lateral / F_lateral_allowed + F_axial /	✓	✓	✓

				$(F_{\text{axial_allowed}} * \text{Rivet_Comb_Axial_Factor}) \leq 1$			
f_SF_Fatigue	1	Safety Factor (SF) for the Fastener Fatigue	1 / f_DoU_Fatigue	Safety Factor (SF) of Screw Fatigue (not available for Rivets). Is calculated separately for each Interface of a Fastener and the worst Interface-DoU is applied for the entire Fastener. The SAME DoU is assigned to each LoadSet, as it depends on the max. Amplitude between two LoadSets.	🚫	🚫	✓
f_Input-SF_ModelClass		Already included Safety Factor for Modeling Method	defined by user	Used Safety Factor to cover uncertainties from simplified Fastener modeling method - depending on Model-Class	✓	✓	✓
f_Input-SF_StickFric		Already included Safety Factor against slipping at an Interface	defined by user	Used Safety Factor to cover uncertainties from simplified Fastener modeling method - against slipping at an Interface	✓	✓	✓
f_Input-SF_ShearStrength		Already included Safety Factor against Shear Strength (Factor_' τ_a/R_m ' * UltimateStrength_' R_m ')	defined by user	Used Safety Factor to cover uncertainties from simplified Fastener modeling method - against Shear Strength (Factor_' τ_a/R_m ' * UltimateStrength_' R_m ')	✓	✓	✓
f_Input-SF_AxialYieldStrength		Already included Safety Factor for Axial Strength against Yield Strength	defined by user	Used Safety Factor to cover uncertainties from simplified Fastener modeling method - for Axial Strength against Yield Strength	✓	✓	✓
f_Input-SF_Fatigue	1	Already included Safety Factor for Fatigue Strength	defined by user	Used Safety Factor to cover uncertainties from simplified Fatigue Assessment method - for Fatigue Strength	🚫	🚫	✓

i_ShearStress_Shaft	MPa	Intersec. Shear Stress at Shaft	i_F_shear/A_Shaft	Acting Shear Stress at Intersection, if Shaft-CrossSection is relevant	✓	✓	✓
i_ShearStress_Thread	MPa	Intersec. Shear Stress at Thread	i_F_shear/A_Thread	Acting Shear Stress at Intersection, if Thread-CrossSection is relevant	✓	✓	✓
f_AxialStress_Shaft	MPa	Fastener Axial Stress in Shaft	f_F_S_Head / StressCrossSection_Shaft	Nominal Axial Normal Stress in the Shaft	✓	✓	✓
f_AxialStress_Thread	MPa	Fastener Axial Stress in Thread	f_F_S_Head / StressCrossSection_AS	Nominal Axial Normal Stress in Thread on the Nut-Side	✓	✓	✓
f_CombStress_Thread	MPa	Fastener Combined Stress in Thread	$(f_{\text{AxialStress_Thread}}^{**2} + 3*(k_{\tau} * \text{MomentShearStress})^{**2})^{**0.5}$, with $k_{\tau}=0.5$	Combined (comparative or reduced) Stress in Thread. Axial Stress and Torsional Shear Stress combined.	✓	✓	✓
f_CombStress_Thread_max	MPa	Fastener Combined Stress in Thread with max. Bolt Pretension	$(f_{\text{AxialStress_Thread_max}}^{**2} + 3*(k_{\tau} * \text{MomentShearStress_max})^{**2})^{**0.5}$, with $k_{\tau}=0.5$	Combined (comparative or reduced) Stress in Thread with max. Bolt Pretension. Axial Stress and Torsional Shear Stress combined.	🚫	✓	✓
f_CombStress_Thread_min	MPa	Fastener Combined Stress in Thread with min. Bolt Pretension	$(f_{\text{AxialStress_Thread_min}}^{**2} + 3*(k_{\tau} * \text{MomentShearStress_min})^{**2})^{**0.5}$, with $k_{\tau}=0.5$	Combined (comparative or reduced) Stress in Thread with min. Bolt Pretension. Axial Stress and Torsional Shear Stress combined.	🚫	✓	✓
f_MaxAxialStress_SDIR	MPa	FastenerBeam: Max.AxialStress	read from Ansys	Nativ FastenerBeam: Max. Axial Stress in Ansys	🚫	🚫	🚫
f_MaxBendingStr_SB	MPa	FastenerBeam: Max.BendingStress	read from Ansys	Nativ FastenerBeam: Max. Bending Stress in Ansys	🚫	🚫	🚫
f_MaxCombStr_SDIR+SB	MPa	FastenerBeam: Max.CombinedStress Axial+Bending	read from Ansys	Nativ FastenerBeam: Max. Axial+Bending Combined Stress in Ansys	🚫	🚫	🚫
f_Pretension_FactorOfYield		Factor Of Yield Point defines max. Pretension Force	defined by user	This factor, together with the yield point of the bolt, defines the max. pretension force	🚫	✓	✓

f_TighteningFactor_alpha		TighteningFactor alpha	defined by user	This factor defines the difference between max. and min. pretension force	🚫	✓	✓
f_F_S_Head	N	Fastener Head Axial Force	<u>for Screws with FEA-Pretension:</u> - i_F_x of Head-Intersec., <u>for Screws with Virtual-Pretension:</u> $F_M + F_SA$, <u>for Rivets:</u> $f_{max_i_F_axial}$ but only positive Values	Axial Force under the Fastener Head ($>0 \dots$ Tension, $<0 \dots$ Compression)	✓	✓	✓
f_F_S_Head_max	N	Fastener Head Axial Force with max. Bolt Preload	<u>for Screws:</u> $F_M_{max} + F_SA$, <u>for Rivets:</u> $-f_{min_i_F_x}$ but only positive Values	Axial Force under the Fastener Head with max. Bolt Preload ($>0 \dots$ Tension, $<0 \dots$ Compression)	🚫	✓	✓
f_F_S_Head_min	N	Fastener Head Axial Force with min. Bolt Preload	<u>for Screws:</u> $F_M_{min} + F_SA$, <u>for Rivets:</u> $-f_{min_i_F_x}$ but only positive Values	Axial Force under the Fastener Head with min. Bolt Preload ($>0 \dots$ Tension, $<0 \dots$ Compression)	🚫	✓	✓
f_F_M	N	used Bolt Preload	read from UI Input	Bolt Preload at assembly, used in FEA model (should stay between $f_F_M_{max}$ and $f_F_M_{min}$)	✓	✓	✓
f_F_M_max	N	max. Bolt Preload	Bolt-Yield-Point * $f_{Pretension_FactorOfYield}$	max. Bolt Preload at assembly, within the achievable scatter of assembly bolt preload	🚫	✓	✓
f_F_M_min	N	min. Bolt Preload	$f_F_M_{max} / f_{TighteningFactor_alpha}$	min. Bolt Preload at assembly, within the achievable scatter of assembly bolt preload	🚫	✓	✓
i_F_SA	N	Intersec. Axial Additional Bolt Load	<u>for Screws with FEA-Pretension:</u> $F_S - F_M$,	Axial Additional Bolt Load (with Load Introduction Factor n from	✓	✓	✓

			<u>for Screws with Virtual-Pretension:</u> $n * (\delta_P / (\delta_P * \delta_S)) * F_A,$ <u>for Rivets:</u> 0	User Input for Fasteners with Virtual-Pretension)			
f_max_i_F_SA	N	Intersec. Axial Additional Bolt Load	Maximum of i_F_SA of all Intersections of a Fastener	Find max. of i_F_SA of ALL Intersections of a Fastener (→ max. F_S_Head on a Screw), especially relevant if more than two bodies are connected	✓	✓	✓
i_F_KR	N	Intersec. Residual Clamp Load	<u>for Screws with FEA-Pretension:</u> - i_F_axial, <u>for Screws with Virtual-Pretension:</u> F_M + F_SA - F_A, <u>for Rivets:</u> 0	residual clamp load at the interface during relief or loading by F_PA	✓	✓	✓
i_F_KR_max	N	Intersec. Residual Clamp Load, with max. Bolt Pretension	<u>for Screws:</u> F_M_max + F_SA - F_A, <u>for Rivets:</u> 0	max. residual clamp load at the interface during relief or loading by F_PA	🚫	✓	✓
i_F_KR_min	N	Intersec. Residual Clamp Load, with min. Bolt Pretension	<u>for Screws:</u> F_M_min + F_SA - F_A, <u>for Rivets:</u> 0	min. residual clamp load at the interface during relief or loading by F_PA	🚫	✓	✓
i_F_A	N	Intersec. Axial Load	<u>for Screws with FEA-Pretension:</u> F_S - F_KR, <u>for Screws with Virtual-Pretension:</u> - i_F_axial, <u>for Rivets:</u>	a component, directed in the bolt axis and proportionally related to the bolt of a working load FB in any direction	✓	✓	✓

			0				
i_F_S	N	Bolt Load	<u>for Screws with FEA-Pretension:</u> $f_{F_S_Head}$, <u>for Screws with Virtual-Pretension:</u> $F_M + F_{SA}$, <u>for Rivets:</u> 0	Bolt Load	✓	✓	✓
i_F_S_max	N	Bolt Load, with max. Bolt Pretension	<u>for Screws:</u> $F_M_{max} + F_{SA}$, <u>for Rivets:</u> 0	Bolt Load, with max. Bolt Pretension	🚫	✓	✓
i_F_S_min	N	Bolt Load, with min. Bolt Pretension	<u>for Screws:</u> $F_M_{min} + F_{SA}$, <u>for Rivets:</u> 0	Bolt Load, with min. Bolt Pretension	🚫	✓	✓
i_F_StickFric	N	Intersec. StickFriction Force	$i_F_KR * \text{FrictionCoeffiction}$	Shear Force that can be transmitted by Friction at an Intersection with the Bolt Pretension used in the FEA model	✓	✓	✓
i_F_StickFric_max	N	Intersec. StickFriction Force with max. Bolt Pretension	$i_F_KR_{max} * \text{FrictionCoeffiction}$	Shear Force that can be transmitted by Friction at an Intersection with max. Bolt Pretension	🚫	✓	✓
i_F_StickFric_min	N	Intersec. StickFriction Force with min. Bolt Pretension	$i_F_KR_{min} * \text{FrictionCoeffiction}$	Shear Force that can be transmitted by Friction at an Intersection with min. Bolt Pretension	🚫	✓	✓
i_F_shear	N	Intersec. Shear Force	$(i_F_y^{**2} + i_F_z^{**2})^{**0.5}$	Acting Shear Force at an Intersection	✓	✓	✓
i_F_axial	N	Intersec. Axial Force	$+i_F_x$	Acting Axial Force at an Intersection (>0...Tension -	✓	✓	✓

				opening gap, <0...Compression - closing gap)			
f_max_i_F_axial	N	Intersec. Axial Force	Maximum of i_F_axial of all Intersections of a Fastener	Find max. of F_axial of ALL Intersections of a Fastener, especially relevant if more than two bodies are connected (conservative assumption: =max Tension on a Rivet)	✓	✓	✓
i_M_bend	N mm	Intersec. Bending Moment	$(i_M_y^{**2}+i_M_z^{**2})^{**0.5}$	Acting Bending Moment lateral to Fastener Axis at an Intersection	🚫	🚫	✓
i_M_axial	N m	Intersec. Moment around Fastener Axis	-i_M_x	Acting Moment (Torque) around Fastener Axis at an Intersection	🚫	🚫	✓
i_F_x	N	Intersection: x-Force	read from Ansys	Intersection: Force in local x-Direction (in Fastener-Axis direction)	✓	✓	✓
i_F_y	N	Intersection: y-Force	read from Ansys	Intersection: Force in local y-Direction (perpendicular to Fastener-Axis)	✓	✓	✓
i_F_z	N	Intersection: z-Force	read from Ansys	Intersection: Force in local z-Direction (perpendicular to Fastener-Axis)	✓	✓	✓
i_M_x	N m	Intersection: x-Moment	read from Ansys	Intersection: Moment around local x-Axis (Fastener-Axis)	✓	✓	✓
i_M_y	N m	Intersection: y-Moment	read from Ansys	Intersection: Moment around local y-Axis (perpendicular to Fastener-Axis)	✓	✓	✓
i_M_z	N m	Intersection: z-Moment	read from Ansys	Intersection: Moment around local z-Axis (perpendicular to Fastener-Axis)	✓	✓	✓
i_u_shear	mm	Intersec. Shear Slip Distance	$(i_u_y^{**2}+i_u_z^{**2})^{**0.5}$	Shear Slip Distance at an Intersection	✓	✓	✓
i_u_axial	mm	Intersec. Axial Displacement	i_u_x	Axial Displacement at an Intersection (>0...Tension, opening gap, <0...Compression, closing gap)	✓	✓	✓

i_u_x	mm	Intersection: rel. x-Displacement	read from Ansys	Intersection: relative axial Displacement in local x-Direction	✓	✓	✓
i_u_y	mm	Intersection: rel. y-Displacement	read from Ansys	Intersection Slip: relative Displacement in local y-Direction	✓	✓	✓
i_u_z	mm	Intersection: rel. z-Displacement	read from Ansys	Intersection Slip: relative Displacement in local z-Direction	✓	✓	✓
i_r_x	deg	Intersection: rel. x-RotationAngle	read from Ansys	Intersection: relative RotationAngle around local x-Axis	✓	✓	✓
i_r_y	deg	Intersection: rel. y-RotationAngle	read from Ansys	Intersection: relative RotationAngle around local y-Axis	✓	✓	✓
i_r_z	deg	Intersection: rel. z-RotationAngle	read from Ansys	Intersection: relative RotationAngle around local z-Axis	✓	✓	✓

How to read the „Unique Names“ of the values:

i_ DoU_ ShearStress_Thread
 f_ DoU_ AxialCombStress_Shaft
 i_ SF_ ShearStress_Shaft
 i_ F_ stickFric
 f_ F_S_ Head
 f_ F_S_ Head
 f_ F_S_ Head
 i_ F_ x

max
min

Value calculated with **max. or min Bolt Preload**. Without this ending, the value uses the Bolt-Pretension from the FEA-model.

additional description

DoU_ ... Degree of Utilization

SF_ ... Safety Factor

Stress_ ... Stress Component

F_ ... Force

M_ ... Moment / Torque

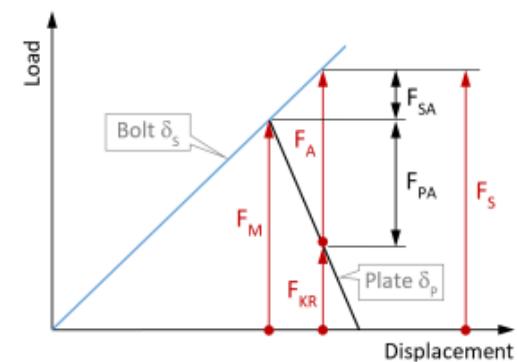
u_ ... relative Displacement

r_ ... relative Rotation Angle

i_ ... Value belongs to a specific **Interface**

f_ ... Value belongs to a specific **Fastener** (only one value for a Fastener, independent of the number of Interfaces)

Special Case:


f_min_ i_F_x

Value from which the Minimum was taken

Minimum Value of all Interfaces of a **Fastener**

the following Force-Names are related to the Joint Diagramm:

i_F_M
 i_F_A
 i_F_KR
 i_F_SA
 i_F_PA
 i_F_S

Bolt Pretension at assembly is always subjected to a certain degree of scatter. This scatter is taken into account by the tightening factor α_A and leads to the difference between max. and min. Preload ... $F_{M \max}$ and $F_{M \min}$.

- Max. preload $F_{M \max}$ is needed for the assessment of the bolt strength and
- Min. preload $F_{M \min}$ is needed for the assessment of the slipping safety factor.

Both conditions ($F_{M \min}$ and $F_{M \max}$) are calculated by FAST+MORE automatically → compare values listed above.

- $F_{M \max} = \text{Bolt-Yield-Point} * \text{Factor-of-Yield-Point}$
- $F_{M \min} = F_{M \max} / \text{tightening factor } \alpha_A$

Details of "FaM-835_Dmax=17.0mm_"

Fastener Group Properties	
Fastener Object Id	835
Fastener Group Id	931
Number of Fastener	6
Fastener Ids	1; 2; 3; 4; 5; 6
Diameter	16 mm
Fastener Type	Screw
Tightening Method	
Tightening Method	($\alpha_A = 1.7 - 2.5$) with Torque...
Tightening Factor α_A Level	use MAX Value of α_A
Tightening Factor α_A Value	2,5
Bolt Pretension	
Bolt Pretension	Virtual (only for Assessment)
max. Bolt Pretension, Factor of Yield Point	0,9
Bolt Pretension Level (in α_A Range)	use MEAN Value of Pretension
<input type="checkbox"/> Preload	45195 N
<input type="checkbox"/> Friction Coefficient at Thread and Head	0,12
<input type="checkbox"/> Tightening Torque	116000 N·mm
<input type="checkbox"/> Virtual Friction Coefficient at Intersec.	0,15

These parameters define the max. and min. Bolt Preload ($F_{M \max}$ and $F_{M \min}$)

This Preload value is actually used in FEA model, if "Real FEA Bolt Preload" is used in higher Modelling Methods.